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We study charge pumping when a combination of static potentials and potentials oscillating with a time
period T is applied in a one-dimensional system of noninteracting electrons. We consider both an infinite
system using the Dirac equation in the continuum approximation and a periodic ring with a finite number of
sites using the tight-binding model. The infinite system is taken to be coupled to reservoirs on the two sides
which are at the same chemical potential and temperature. We consider a model in which oscillating potentials
help the electrons to access a transmission resonance produced by the static potentials and show that nonadia-
batic pumping violates the simple sin � rule which is obeyed by adiabatic two-site pumping. For the ring, we
do not introduce any reservoirs, and we present a method for calculating the current averaged over an infinite
time using the time evolution operator U�T� assuming a purely Hamiltonian evolution. We analytically show
that the averaged current is zero if the Hamiltonian is real and time-reversal invariant. Numerical studies
indicate another interesting result, namely, that the integrated current is zero for any time dependence of the
potential if it is applied to only one site. Finally we study the effects of pumping at two sites on a ring at
resonant and nonresonant frequencies, and show that the pumped current has different dependences on the
pumping amplitude in the two cases.
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I. INTRODUCTION

The idea that oscillating potentials applied to certain
points in a one-dimensional system can pump a net charge
between two reservoirs at the same chemical potential has
been studied extensively for many years, both
theoretically1–42 and experimentally.43–49 For the case of non-
interacting electrons, theoretical studies of this phenomenon
have used adiabatic scattering theory,9–17 Floquet scattering
theory,21–23 the nonequilibrium Green’s-function
formalism,24–27 and the equation-of-motion approach.36,37

The case of interacting electrons has been studied using a
renormalization-group method for weak interactions,50 and
the method of bosonization for arbitrary interactions.51–61

Other interesting studies of pumping include adiabatic quan-
tum pumping in graphene where the electrons obey the Dirac
equation62 and classical pumping on a finite ring by oscillat-
ing hopping rates at two sites.63

With the exception of a few papers,22,24–27,49 the earlier
studies of charge pumping have generally considered sys-
tems in which oscillating potentials are applied to two or
more sites. In such cases, it is known that if the oscillation
frequency � is small, the dc part of the pumped current is
proportional to �; the charge pumped per cycle �with time
period 2� /�� therefore has a finite value in the adiabatic
limit �→0. However, it has been noted in Refs. 22 and
24–27 that an oscillating potential applied to a single site can
also pump charge provided that the system has no left-right
symmetry; this can happen if, for instance, appropriate static
potentials are present. Most studies of charge pumping have
also been limited to infinite systems in which the left and
right sides of the system �called the leads or reservoirs� are
associated with certain chemical potentials and temperatures.
Charge pumping on a finite ring has been studied in a few
papers for adiabatic13–16 and nonadiabatic situations.23,25,26

In this paper, we will study charge pumping in both an
infinite system as well as on a finite ring for noninteracting
electrons. We will study the effects of oscillating potentials
applied to either one site or more than one site. We will not
assume the oscillation frequency to be small �i.e., the adia-
batic limit� but will assume the oscillation amplitudes to be
small. For the infinite system, we will assume the existence
of reservoirs, but for the finite ring, we will assume that the
system is not coupled to any reservoirs and that the time
evolution is purely Hamiltonian. We will see that results ob-
tained in the two cases differ in some interesting ways. We
will restrict our analysis to zero temperature and spinless
electrons since spin does not play an essential role in the
absence of interactions between the electrons.

The plan of the paper is as follows. In Sec. II, we will
examine charge pumping in the infinite system. For conve-
nience, this will be studied in the continuum limit using a
linearized form of the energy-momentum relation; namely,
we will use the massless Dirac equation with both right- and
left-moving modes. We will assume the system to be coupled
to reservoirs on the two sides, and the chemical potentials
and temperature of these will be introduced using the formal-
ism of Refs. 22 and 23. This implicitly assumes that an elec-
tron, after passing through the region with the static and
oscillating potentials, equilibrates with whichever lead it en-
ters; the precise mechanism for energy or momentum relax-
ation in the reservoirs will not be specified in our calculation.
As a specific example, we will consider a model in which the
static potentials have transmission resonances at certain en-
ergies and potentials oscillating at exactly the right frequency
can then lead to enhanced charge pumping;38,39 in this
model, we show how a competition between different pro-
cesses can lead to either maxima or minima in the pumped
current. We find that the pumped charge is of second order in
the strengths of the oscillating potentials and can be much
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larger for two-site pumping compared to one-site pumping.
We also find that the “sin �” rule, which has been discussed
earlier in the adiabatic limit �→0 for pumping by two os-
cillating potentials with a phase difference of �,4,43 breaks
down if � is larger than the resonance width.

In Sec. III, we will study charge pumping on a finite ring
using a tight-binding Hamiltonian to describe the electrons;
no reservoirs will be introduced. We will present a formalism
for calculating the long-time averaged current if there are
potentials oscillating with a time period T; this is done by
considering the eigenstates of the unitary time evolution op-
erator U�T�. Next, we will assume that the system begins in
a specific initial state corresponding to a particular filling at
zero temperature. We will then evolve the system using only
the Hamiltonian, without introducing any mechanisms for
momentum relaxation and phase decoherence; this means
that the system will never reach a steady state and that its
properties depend on the initial state. We will show analyti-
cally that if the Hamiltonian is real and time-reversal invari-
ant, then charge pumping cannot occur even if the system
has no left-right symmetry. Numerically, we also find that if
the Hamiltonian is real and if an oscillating potential is ap-
plied to only one site, then charge pumping does not occur
even if the oscillating potential is not time reversal invariant
and the system has no left-right symmetry. It is therefore
necessary to apply oscillating potentials to at least two sites
in order to pump charge. We will also study what happens at
both nonresonant and resonant frequencies; the latter means
that the oscillation frequency is equal to the energy differ-
ence between a filled state and an empty state of the time-
independent part of the Hamiltonian. �We would like to men-
tion here that charge pumping on a ring at resonant and
nonresonant frequencies has also been studied earlier in Ref.
23�. In the Appendix, we will present details of the calcula-
tion of the eigenstates of U�T� to first order in the oscillating
potentials, both for the nonresonant and resonant cases. We
will show there that the pumped charge can receive contri-
butions at either zeroth or first order in the oscillating poten-
tial in the resonant case but only at second order in the non-
resonant case. In Sec. IV, we will summarize our results and
emphasize the different assumptions that we have made in
the models defined on the infinite line and on a ring. Finally,
we will discuss possibilities for experimentally testing our
results in two kinds of systems, namely, mesoscopic rings
and aromatic molecules.

II. CHARGE PUMPING ON AN INFINITE LINE

In this section, we will study charge pumping on an infi-
nite line. Our model consists of a gapless system of nonin-
teracting spinless electrons subject to some static and oscil-
lating potentials. We will assume that the regions lying far to
the left and far to the right of all the potentials have the same
chemical potential given by the Fermi energy EF �we will
work at zero temperature�. Assuming that the oscillating fre-
quency is small compared to the bandwidth, we will linearize
the energy-momentum dispersion around EF. Let us denote
the Fermi velocity and Fermi wave number by vF
= �dE /dp�E=EF

and kF, respectively. �The relation between kF

and EF is governed by the underlying microscopic model.
For instance, in a tight-binding lattice model with the disper-
sion E=−2� cos k, where � is the nearest-neighbor hopping
amplitude, we have EF=−2� cos kF, where 0�kF���. We
can then define the electron field operator

��x� = �R�x�eikFx + �L�x�e−ikFx, �1�

where �L and �R are the fermionic field operators for the
left- and right-moving electrons. In terms of these fields, the
Hamiltonian in the presence of several pointlike potentials is
given by H=H0+V, where

H0 =� dxivF�− �R
† ��R

�x
+ �L

† ��L

�x
� ,

V =� dx�
p

��x − xp�Up�t��†�x���x� . �2�

In the absence of the potential V, the eigenstates of H are
given by exp�i�	kx−Et��, where E=vFk and 	k refer to
right- and left-moving modes, respectively; note that we are
measuring the energy E and the wave number k with respect
to EF and kF, respectively, and we have set 
=1. Using Eq.
�1�, we find that the equations of motion for �R and �L are
given by61

i
��R

�t
+ ivF

��R

�x
= �

p

��x − xp�Up�t���R + �Le−i2kFxp� ,

i
��L

�t
− ivF

��L

�x
= �

p

��x − xp�Up�t���L + �Rei2kFxp� . �3�

We can solve these equations by integrating over small re-
gions from xp−� to xp+� to find the discontinuities in the
fields at x=xp.

Let us now consider two types of pointlike potentials:
am��x−xm� which are time independent and wn�t���x−xn�
which oscillate in time as wn�t�=bn cos��t+�n�. We will as-
sume that the oscillation amplitudes bn are small compared
to vF and will generally calculate the pumped charge to the
lowest nonzero order in the bn’s. Let us first assume that bn
=0 for all n, and that we can completely solve the problem
with the static potentials. This can be described in terms of a
scattering matrix S as follows. If R denotes the region within
which all the static potentials are present, then an electron
incoming from a region far to the left of R �which we denote
as x�R� with unit amplitude and energy and wave number
given by E and k=E /vF, respectively, will have a wave func-
tion ��x�e−iEt given by

��x� = eikx + rL�E�e−ikx for x � R

=tR�E�eikx for x 
 R , �4�

where rL and tR denote the reflection and transmission am-
plitudes. Similarly, an electron incoming from a region far to
the right of R with unit amplitude and energy and wave
number given by E and −k=−E /vF, respectively, has the
wave function ��x�e−iEt, where
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��x� = e−ikx + rR�E�eikx for x 
 R

=tL�E�e−ikx for x � R . �5�

Assuming that all these reflection and transmission ampli-
tudes are known, let us now turn on the oscillating potentials,
all of which we take to lie to the left of R, and proceed as
follows.

An electron incoming from the left of R with unit ampli-
tude and energy �wave number� E0 �k0=E0 /vF� will now
have a wave function ��x , t� of the form

� = ei�k0x−E0t� + �
j

rL,je
i�−kjx−Ejt� for x � R

=�
j

tR,je
i�kjx−Ejt� for x 
 R , �6�

where Ej =E0+ j�, kj =Ej /vF, and rL,j and tR,j will now gen-
erally be functions of both E0 and Ej. Similarly, an electron
incoming from the right of R with unit amplitude and energy
�wave number� E0 �k0=E0 /vF� will have a wave function
��x , t� of the form

� = ei�−k0x−E0t� + �
j

rR,je
i�kjx−Ejt� for x 
 R

=�
j

tL,je
i�−kjx−Ejt� for x � R , �7�

where Ej =E0+ j�, kj =Ej /vF, and rR,j and tL,j will be func-
tions of both E0 and Ej.

The sums over the side band index j in Eqs. �6� and �7�
will go from −� to � for a Dirac electron. But, in practice, j
gets cutoff for two reasons. First, if the energy Ej goes above
or below the bandwidth of the system, the corresponding
wave function decays exponentially as 	x	→�; such a state
does not carry any current. Second, if all the pumping am-
plitudes bn are small, one can show, using Eq. �3� recur-
sively, that the leading order terms in rR/L,j and tR/L,j are
given by 	bn		j	 if j�0; this goes to zero exponentially as
	j	→�. Hence, if � is much smaller than the bandwidth and
E0 is not too close to the edges of the band, the contributions
of the higher side bands become very small long before the
energy Ej reaches the band edges.

We will now calculate the different reflection and trans-
mission amplitudes using Eq. �3�. To first order in bn, only
the first side bands with j= 	1 survive. If the oscillating
potentials are given by

�
n

��x − xn�bn cos��t + �n� , �8�

we find that

tR,	1 = −
i

2vF
tR�E	1��

n

bne�i�n

��e�i�xn/vF + rL�E0�e−i�k	1+k0+2kF�xn� ,

rR,	1 = −
i

2vF
tR�E	1�tL�E0��

n

bne�i�ne−i�k	1+k0+2kF�xn.

�9�

Similar expressions can be derived for tL,	1 and rL,	1 but
these will not be required below. The expressions in Eq. �9�
can be understood as arising from a sum over paths as ex-
plained in Ref. 37.

Given all the transmission and reflection amplitudes tR/L,j
and rR/L,j, the dc part of the current in, say, the right lead is
given by22,23

IR,dc = q�
−�

� dE0

2�
�

j

�	rR,j	2
fR�E0� − fR�Ej��

+ 	tR,j	2
fL�E0� − fR�Ej��� , �10�

where q is the charge of the electron and f��E�
=1 / �e��E−���+1� is the Fermi function in the lead �. At zero
temperature, f��E�=1 if E��� and 0 if E���. If we as-
sume zero bias, �R=�L=0 �we are defining energy with re-
spect to EF�, and restrict ourselves to terms of second order
in the bn’s, we obtain the expression

IR,dc = q�
−�

0 dE0

2�
�	rR,1	2 + 	tR,1	2�

− q�
0

� dE0

2�
�	rR,−1	2 + 	tR,−1	2� . �11�

In the adiabatic limit �→0, we can show from this that, up
to order �, the current will involve only cross terms of the
form �m�nbmbn sin��m−�n� multiplied by terms involving
xm and xn. Let us call this the sin � rule; it implies that two
potentials cannot pump current if their phase difference is 0
or �. We also see that if there is an oscillating potential at
only site, there is no current at order �. These features arise
because of the near cancellation in Eq. �11� between 	rR,1	2
and 	rR,−1	2 and between 	tR,1	2 and 	tR,−1	2 at order �. How-
ever, the sin � rule does not hold, and an oscillating potential
at even one site can pump current, if � is larger than the
resonance width; in that case E0+� and E0−� will be suffi-
ciently different from each other so that 	rR,1	2 and 	rR,−1	2 or
	tR,1	2 and 	tR,−1	2 are no longer almost equal to each other.
The violation of the sin � rule will be explicitly demon-
strated below for the case of pumping at two sites.

We will now illustrate the above results for the case in
which there are two static �-function potentials given by

a1��x − x1� + a2��x − x2� . �12�

Defining ui=ai /vF, we find the following expressions for the
reflection and transmission amplitudes as functions of the
wave number k,

tR = tL =
1

1 + i�u1 + u2� − u1u2�1 − ei2�k+kF��x2−x1��
,

rL = tR�− iu1ei2�k+kF�x1 − iu2ei2�k+kF�x2 + u1u2�ei2�k+kF�x1

− ei2�k+kF�x2�� ,
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rR = tR�− iu1e−i2�k+kF�x1 − iu2e−i2�k+kF�x2

− u1u2�e−i2�k+kF�x1 − e−i2�k+kF�x2�� . �13�

These expression simplify considerably if u1=u2=u, i.e., if
we have a symmetric double barrier. Defining �= �k+kF��x2
−x1�, we obtain

	tR	2 = 	tL	2 =
1

1 + 4u2�cos � + u sin ��2 . �14�

We then see that 	tR	= 	tL	=1, i.e., there is a resonance, when-
ever tan �=−1 /u. This occurs at �= �n+1 /2�� for u→0 and
at n� for u→�. For 	u	
1, the resonances are very sharp,
with 	tR	2 dropping to 1/2 when one deviates from one of the
resonant values of � by 1 / �2u2�, namely, when kF deviates
from one of the resonant values by 1 / �2u2	x2−x1	�.

Similar to other models considered in the earlier litera-
ture, we can now study what happens when an electron is
incident on the symmetric double barrier with an energy E0
which is not at resonance, but the pumping frequency is such
that E0+� or E0−� is equal to one of the resonant energies
called Er. Then the oscillating potentials can change the en-
ergy of the electron to Er which can then transmit through
the double barrier. Thus the pumping can help the electrons
to access a resonance. We will compare below the cases of
pumping at one site versus two sites and also study the de-
pendence of the pumped current on the phase difference � in
the case of two-site pumping.

In Fig. 1, we show the pumped dc current IR,dc versus the

Fermi energy EF when there is a static and symmetric double
barrier and an oscillating potential is applied at one site lying
on the left of the double barrier. As EF increases, we observe
first a maximum at EF=0.883, then a minimum at 0.921, and
then a small maximum at 0.960. These features arise for the
followings reasons. The first maximum at 0.883 coincides
with Er−� within a spread given by the resonance width
1 / �2�u2��0.010 �note that this is significantly less than the
pumping frequency �=0.035�. This occurs because an elec-
tron approaching from the left reservoir with an energy equal
to EF=Er−� can get boosted up to the energy Er due to the
oscillating potential; it can then transmit through the double
barrier. The minimum at 0.921 coincides with Er; note that
this corresponds to a negative current, namely, the current is
flowing to the left. This occurs due to a combination of two
effects. An electron approaching from the right reservoir
with an energy equal to EF=Er transmits through the double
barrier; it can then get boosted to the energies Er	� by the
oscillating potential, which means that it cannot transmit
back to the right through the double barrier. Similarly, an
electron approaching from the left reservoir with the an en-
ergy equal to EF=Er can get boosted to the energies Er	�
by the oscillating potential, which means that it cannot trans-
mit to the right through the double barrier. Hence, in both
cases, the electron finds it easier to go to the left than to the
right, leading to a net current to the left. Finally, the small
maximum at 0.960 coincides with Er+�. This maximum is
not very robust; its height can change easily depending on
the values of the various parameters because it is a result of
several competing processes. An electron approaching from
the right reservoir with an energy equal to Er �which is less

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
−4

−3

−2

−1

0

1

2
x 10 − 6

EF

I dc

FIG. 1. �Color online� Current pumped through a symmetric double barrier by an oscillating potential applied at one site as a function of
EF. The barrier strengths ui are both equal to 4, and their positions are at 0 and �. The resonant energy is Er=0.917, and no bias is applied.
The oscillating potential is applied at the position −� with an amplitude 0.2 and frequency 0.035. We set vF=1. The locations of the two
maxima and the minimum in the middle are discussed in the text.
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than EF� transmits through the double barrier; it can then get
boosted to the energies Er	� by the oscillating potential
and then escape to the left reservoir. On the other hand, an
electron approaching from the left reservoir with an energy
equal to Er	� can get boosted to the energy Er by the
oscillating potential, which means that it can then transmit to
the right through the double barrier. Depending on which of
these is larger, the net current can be positive or negative.

In Fig. 2, we show the pumped dc current versus the
Fermi energy EF when there is a symmetric double barrier
and oscillating potentials are applied at two sites �lying on
the left of the double barrier� with a phase difference of � /2
between the two potentials. Just as in Fig. 1, as EF increases,
we observe first a maximum at EF=0.895, then a minimum
at 0.932, and then a small maximum at 0.963. The reasons
for all these features are the same as the ones discussed
above for Fig. 1. We observe that the maximum value of the
pumped current in Fig. 2 is about ten times the correspond-
ing value in Fig. 1, showing that pumping by two oscillating
potentials can be much more effective than by one oscillating
potential. This can be qualitatively understood as follows. If
oscillating potentials are applied to K sites, and their effects
add up constructively, the reflection and transmission ampli-
tudes in the first side band would be of the order of K times
what one would get if there was pumping at only one site;
this is evident from Eq. �9�. The pumped current would
therefore be magnified by a factor of K2.

In Fig. 3, we show the pumped dc current as a function of
the phase difference between oscillating potentials applied at

two sites, for four different values of the Fermi energy EF.
These values have been chosen to lie between the first maxi-
mum and the minimum observed in Fig. 2. We observe that
all the four curves are approximately of the form d1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10− 5

E
F

I d
c

FIG. 2. �Color online� Current pumped through a symmetric double barrier by oscillating potentials applied at two sites. The barrier
strengths are both equal to 4, and their positions are at 0 and �. The resonant energy is Er=0.917, and no bias is applied. The oscillating
potentials are applied at the positions −� and −2� with the same amplitude 0.2 and frequency 0.035 but with a phase difference of � /2. We
set vF=1. The locations of the maxima and the minimum are discussed in the text.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3

−2

−1

0

1

2

3

4
x 10− 5

φ1 − φ0 in units of π

I d
c

0.893
0.910
0.920
0.934

FIG. 3. �Color online� Current pumped through a symmetric
double barrier by oscillating potentials applied at two sites as a
function of the phase difference �2−�1, for four different Fermi
energies given by 0.893 �magenta solid line�, 0.910 �blue dashed
line�, 0.920 �green dotted-dashed line�, and 0.934 �red dotted line�.
The barrier strengths are both equal to 4, and their positions are at
0 and �. The resonant energy is Er=0.917 and no bias is applied.
The oscillating potentials are applied at the positions −� and −2�
with the same amplitude 0.2 and frequency 0.035. We set vF=1.
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+d2 sin��2−�1+d3�, where the values of d1, d2, and d3 are
different for the different curves. All of these differ from a
simple sin � rule which would correspond to the parameters
d1 and d3 being equal to 0. This violation of the sin � rule
occurs here because we have chosen � to be larger than the
resonance width. The demonstration of this violation is one
of the main results of this section.

The results in this section can be generalized to finite
temperatures by using the appropriate Fermi functions in Eq.
�10�. One of the effects of a finite temperature T is to intro-
duce a finite phase decoherence length given by l�

=
vF / �kBT�.64 We expect this to destroy the resonance pro-
duced by the static double barrier when l� becomes smaller
than the distance between the barriers; hence the peaks in the
pumped current will become broad and eventually disappear.

III. CHARGE PUMPING ON A FINITE RING

In this section, we will study what happens when oscillat-
ing potentials are applied to a finite-sized ring which is not
coupled to any reservoirs. This study may possibly be of
interest in the context of transport in mesoscopic rings or
even molecular rings10 which are either not coupled to any
reservoirs or are so weakly coupled to reservoirs that the
momentum relaxation and phase decoherence times are
much longer than the time period of the oscillating poten-
tials. �A discussion of the possible experimental applications
of our work will be presented in Sec. IV.� Once again, we
will consider noninteracting spinless electrons. The Hamil-
tonian will be taken to be of the tight-binding form with
nearest-neighbor hopping amplitudes and on-site potentials
which are either static or oscillating with a time period T.
Namely, we have H=H0+V�t�, where

H0 = − �
n=1

N

��cn
†cn+1 + cn+1

† cn� + �
n=1

N

ancn
†cn,

V�t� = �
n=1

N

wn�t�cn
†cn, �15�

where wn�t�=wn�t+T� with T denoting the time period. �We
will set the hopping amplitude �=1 in all our numerical
calculations.� Note that we have included all the static poten-
tials in H0. We will impose the condition that

�
0

T

dtwn�t� = 0 �16�

for all n; if necessary, this can be ensured by adding a con-
stant to wn�t� and subtracting the same constant from an in
H0. We are therefore assuming that V satisfies

�
0

T

dtV�t� = 0. �17�

We will impose periodic boundary conditions so that N+1

1 in Eq. �15�. It will be convenient below to rewrite the
operators in Eq. �15� as N�N matrices in the one-particle
basis. Namely,

�H0� jk = − ��� j,k+1 + � j,k−1� + �
n

an� j,k� j,n,

�V�t�� jk = �
n

wn�t�� j,k� j,n. �18�

We will now study various features of this model; in par-
ticular, we will calculate the current averaged over one time
period for different choices of the oscillating potential V�t�.
We will assume that the system is not connected to any ex-
ternal reservoirs and has no mechanism for momentum re-
laxation or phase decoherence. We will begin with a given
initial state in which the lowest p energy levels of the Hamil-
tonian H0 in Eq. �15� are filled �so that the filling fraction is
p /N� and then evolve the system in time using only the total
Hamiltonian H given by Eq. �15�. Consider the current op-
erator for the bond �n ,n+1�,

Ĵn = − i�cn
†cn+1 − cn+1

† cn� �19�

or, in matrix form,

�Ĵn� jk = − i�� j,n�k,n+1 − � j,n+1�k,n� . �20�

�Note that this matrix is Hermitian, imaginary, and antisym-
metric�. We can then obtain the average value of the current

at that bond by calculating the expectation value of Ĵn over
many time periods as described below; let us denote this
average value by Idc. Note that in the absence of reservoirs,
the system will not reach a steady state. The quantity Idc
should therefore not be thought of a steady-state current; it is
merely the current averaged over many time periods. We will
see that apart from the average part called Idc, the current
continues to oscillate in an aperiodic manner even if we wait
for a period of time which is much longer than T.

The time evolution of the system is governed by the uni-
tary time evolution operator

U�t� = lim
M→�

T�
j=1

M

e−iH�tj�dt, �21�

where T stands for time ordering �namely, TO�t1�O�t2�
=O�t1�O�t2� if t1� t2� and we have divided the time t into M
equal steps, i.e., dt= t /M and tj = �j−1 /2�dt; eventually, we
have to take the limit M→�. We now consider U�T�, where
T is the time period. Let v j and ei�j denote the eigenstates and
corresponding eigenvalues of U�T� with j=1,2 , . . . ,N. Due
to the periodicity of H in time, we see that U�sT�v j =eis�jv j
for any positive integer s. Let us assume for simplicity that
there is no degeneracy, so that ei�j �ei�k if j�k; we can take
the v j’s to form an orthonormal basis.

We observe that if the periodic potentials in Eq. �15� are
all shifted in time by the same amount, i.e., wn�t�→wn�t
+��, where � lies in the range �0,T�, this generally changes
the unitary operator U�T�. However, if we redefine the vec-
tors v j→v j�=U���v j, we can use the periodicity of wn�t� to
show that the v j� will be eigenstates of the new operator
U��T� with the same eigenvalues ei�j. This can be proved as
follows. Let us introduce a two-parameter notation for the
time evolution operator
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U2�t�,t� = lim
M→�

T�
j=1

M

e−iH�tj�dt, �22�

where tj = t+ �j−1 /2�dt and dt= �t�− t� /M. According to this
notation, what we called U�t� earlier is actually U2�t ,0� and
the time-shifted operator U��T� is U2�T+� ,��. The periodic-
ity of wn�t� then implies that U2�T+� ,��U2�� ,0�
=U2�� ,0�U2�T ,0�, namely, that U��T�U���=U���U�T�.
Hence U�T�v j =ei�jv j implies that v j�=U���v j satisfies
U��T�v j�=ei�jv j�. Next, let us define the matrix for the current
averaged over one time period,

�Ĵn� jk =
1

T
�

0

T

dtv j
†U†�t�ĴnU�t�vk. �23�

Then we can use the identity U�t�U†���=U�t−��, for t��, to
show that

v j
†U†�t�ĴnU�t�vk = �v j��

†U†�t − ��ĴnU�t − ��vk�. �24�

Integrating both sides of Eq. �24� over one time period T, we

see that the quantities �Ĵn� jk defined in Eq. �23� are invariant
under a shift in time by an arbitrary amount �.

We now begin with an initial one-particle state �a at time
t=0. This can be written as a linear superposition, �a
=� jcajv j, where caj =v j

†�a. If we evolve this initial state us-
ing the Hamiltonian H, the current averaged over an infi-
nitely long time will be given by

Jn��a� = lim
s→�

1

sT
�

0

sT

dt�a
†U†�t�ĴnU�t��a

= lim
s→�

1

s �
m=0

s−1

�
j,k

eim��k−�j�caj
� cak�Ĵn� jk. �25�

Since we have assumed that there is no degeneracy, i.e.,
ei��k−�j��1 if j�k, we see that

lim
s→�

1

s �
m=0

s−1

eim��k−�j� = � j,k. �26�

Hence Eq. �25� simplifies to

Jn��a� = �
j=1

N

	caj	2�Ĵn� j j . �27�

We thus have a simple expression for the current averaged
over an infinite amount of time, even though the current will
oscillate in an aperiodic manner at all times due to the factor
of eim��k−�j� in Eq. �25�. Finally, if we start at t=0 with p
electrons occupying the orthonormal states �a, where a
=1,2 , . . . , p, the current averaged over an infinite time will
be given by

Idc = �
a=1

p

�
j=1

N

	caj	2�Ĵn� j j . �28�

We have numerically computed the diagonal part of the av-

eraged current �Ĵn� j j for several different situations. For the
case in which H is real, we have made the following obser-

vations, all of which will be seen to be quite different from
the situation on the infinite line.

�i� If the periodic potentials wn�t� are shifted in time by an

amount � as described above, the value of �Ĵn� j j changes in
general. This is because the overlaps 	caj	2 of the new eigen-
states v j� with the initial states �a is given by

	caj	2 = 	v j
†U†����a	2, �29�

which will generally depend on �, except in the trivial limit
in which all the oscillating potentials wn�t� are set equal to
zero. Hence the averaged current given in Eq. �28� will vary

with �, even though �Ĵn� j j is independent of � as discussed
earlier. All this is quite different from the situation on the
infinite line where the time-averaged current does not change
if all the periodic potentials are shifted in time by the same
amount.

We note, however, that the dependence of Idc on the shift
� �or, equivalently, the overall phase of all the oscillating
potentials� is weak if the amplitudes of all the oscillating
potentials are small compared to the hopping amplitude �.
This statement will be made more precise below.

�ii� If the periodic potential is time-reversal invariant, i.e.,
if wn�t�=wn�−t� which is also equal to wn�T− t� due to the

periodicity in time, then �Ĵn� j j =0 for each value of j. We will
present an analytical proof of this below. From this it follows

that �Ĵn� j j =0 even if the periodic potential is time-reversal
invariant only up to a shift, i.e., if wn�t�=wn��− t� for some
value of �. This too differs from the situation on the infinite
line where the averaged current is nonzero even if the peri-
odic potential is time reversal invariant, as long as the static
potentials break the left-right symmetry.

�iii� If the periodic potential is applied to only one site,

then �Ĵn� j j =0 even if the potential has no particular symme-
try in time. We have found this numerically for a wide vari-

ety of potentials wn�t�; �Ĵn� j j always turns out to be zero to
very high precision. We have no analytical understanding of
this remarkable result. This is also different from the situa-
tion on the infinite line where we have already seen that an
oscillating potential applied to only one site can pump cur-
rent if the static potentials break left-right symmetry.

We will now prove analytically that �Ĵn� j j =0 if H is real
and wn�t�=wn�T− t� for all n. Following the notation of Eq.
�21�, this property of wn�t� implies that

�e−iH�t�dt�� = �e−iH�T−t�dt�−1, �30�

and therefore that U��T�=U−1�T�. Hence U�T�v j =ei�jv j im-
plies that U�T�v j

�=ei�jv j
�. The nondegeneracy of the eigenval-

ues of U�T� then implies that v j
� must be proportional to v j.

Hence we can multiply the v j’s by appropriate phases to
ensure that v j

�=v j for each value of j. Next, we can use Eq.
�30� to show that

U�T − t� = U��t�U�T� �31�

for any value of t lying in the range �0,T�. We can now
combine Eq. �31� with the reality of v j to show that

v j
†U†�T− t�ĴnU�T− t�v j, which must be real since Ĵn is Her-
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mitian, is equal to v j
†U†�t�Ĵn

�U�t�v j =−v j
†U†�t�ĴnU�t�v j since

Ĵn
�=−Ĵn. We thus see that

�Ĵn� j j =
1

T
�

0

T

dtv j
†U†�t�ĴnU�t�v j = 0 �32�

due to an exact cancellation of the integrand at the times t
and T− t.

In Fig. 4, we show that the current integrated over one
time period is zero if an oscillating potential is applied to
only one site; as a specific example, we have considered the
contribution to the current from the third eigenstate of U�T�
for a ring with six sites, when a static potential and an oscil-
lating potential are applied to two different sites. The way in
which the current integrates to zero is quite different depend-
ing on whether the oscillating potential is time-reversal in-
variant or not. If the oscillating potential is time-reversal
invariant, the integrated current vanishes due to a pairwise
cancellation from the times t and T− t as we have proved
above. But if the oscillating potential is not time-reversal
invariant, there is apparently no simple symmetry reason for
the vanishing of the integrated current.

Since the integrated current vanishes if an oscillating po-
tential is applied to only one site, we will now study what
happens when oscillating potentials are applied to two sites.
In all the figures discussed below �Figs. 5–9�, we will con-
sider a six-site system in which a static potential is applied at

site 2, and oscillating potentials of the forms b cos��t+�0�
and b cos��t+� /2+�0� are applied at sites 3 and 4, respec-
tively.

We first study the dependence of the pumped current on
the overall phase �0 of the oscillating potentials. We take
b=0.1, and use Eqs. �28� and �29� to compute the averaged
current as a function of �0=2�� /T. In Fig. 5, we show the
dependence of the current Idc on �0 when the system has
three electrons which corresponds to half filling. We find that
the variation in Idc from its mean value is about 8%. When
we reduce b by a factor of 2, we find that the mean value of
Idc decreases by a factor of 4 while its variation with �0
decreases by a factor of 16. In the Appendix, we show that
the mean value of Idc scales as b2 which is in agreement with
the numerical result quoted above. In addition, the numerics
suggests that the variation in Idc with �0 scales as b4. Thus, if
the pumping amplitude b is small compared to the hopping
amplitude �, the variation in the pumped current with �0
becomes much smaller than the current itself.

Next, we consider the contributions to the averaged

pumped currents, Ij 
�Ĵn� j j of the different eigenstates of
U�T�, taking the overall phase to be given by �0=0. For the
six-site ring, with a static potential of strength 1 applied at
site 2, the eigenvalues of the static part of the Hamiltonian,
H0, are equal to −1.8912, −1.0000, −0.7046, 1.0000, 1.3174,
and 2.2784. In Fig. 6, we show the six contributions Ij as a
function of the oscillation amplitude b, when the oscillation
frequency �=0.2 is nonresonant, i.e., it does not correspond
to the difference between any two energy levels of H0. We

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

−0.01
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t / T

I(
t)

FIG. 4. �Color online� Instantaneous current at various times over one time period T=10� �corresponding to �=0.2� for an oscillating
potential applied at one site, for the third eigenstate of U�T� for a six-site system. Two cases are considered: the oscillating potential is �i�
time-reversal invariant �blue dashed line� and �ii� not time-reversal invariant �red solid line�. A static potential of strength 1 is applied at site
2, while the oscillating potential is applied at site 3. For case �i� with an oscillating potential cos��t�+0.2 cos�2�t�, we see an exact
cancellation between the values at times t and T− t, while case �ii� with an oscillating potential cos��t�+0.5 sin�2�t� does not show such a
pairwise cancellation. In both cases, the integrated current contributed by the third eigenstate is zero.
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see that all the curves show a quadratic dependence on b,
although two of them lie very close to zero; the quadratic
dependence is in accordance with the results derived in the
Appendix for the nonresonant case. In Fig. 7, we show the
total pumped current Idc versus b when there are three elec-
trons, where Idc has been calculated using Eq. �28� and the
individual pumped currents shown in Fig. 6.

In Fig. 8, we show the contributions Ij as a function of b,
when the oscillation frequency �=1.7046 is resonant; it cor-
responds to the difference between the third and fourth en-
ergy levels of H0. We see that four of the curves lie very
close to zero and show a quadratic dependence on b, but the
other two curves, which have large contributions from the
third and fourth eigenstates of H0, show a linear dependence
on b; the linear dependence agrees with the results derived in
the Appendix for the resonant case. In Fig. 9, we show the
total current Idc versus b when there are three electrons. This
current varies quadratically with b for the following reasons.
First, the two states which show a linear dependence on b in
Fig. 8 are found to contribute with equal weight to Idc. Sec-
ond, the slopes of these two curves in Fig. 8 are equal and
opposite at b=0. Hence the linear dependences on b of these
two curves cancel out when they are added up using Eq. �28�
to calculate Idc which therefore shows a quadratic depen-
dence on b. We also observe that the currents in Fig. 9 are
about 90 times those in Fig. 7, for the same values of b; this
shows the effectiveness of charge pumping at resonant ver-
sus nonresonant frequencies.

Finally, let us briefly discuss what happens if the Hamil-
tonian is not real. For instance, if there is a magnetic flux
passing through the ring, its effects can be studied by making

the hopping amplitudes � complex in Eq. �15�. In such cases,
we find that there can be a net dc current in the ground state
even in the absence of any oscillating potentials; this is
called a persistent current. The value of the dc current can
then change even if we apply oscillating potentials which are
time-reversal invariant or if an oscillating potential is applied
at only one site.

IV. DISCUSSION

To summarize, we have studied charge pumping both on
an infinite line and on a finite ring, for a system of noninter-
acting electrons at zero temperature. For the infinite line with
reservoirs at the same chemical potential on the two sides,
we have verified, in agreement with earlier work, that oscil-
lating potentials applied to one or two sites can pump a net
dc current as long as the left-right symmetry is broken by
some static potentials; the oscillating potentials do not need
to break time-reversal invariance.22 As a specific example,
we have studied pumping in a situation where the Fermi
energy differs from the resonant energy but the pumping
frequency is equal to the difference of the those two energies.
We have contrasted the cases of pumping at one site and two
sites. We have also shown that the sin � rule, which holds in
the adiabatic limit ��→0� for pumping by two oscillating
potentials with a phase difference of �, fails if � is larger
than the resonance width.

For a purely Hamiltonian evolution on a finite ring, we
have shown that if both the static and time-dependent parts
of the Hamiltonian are real, the net dc current is zero either if
the oscillating potentials are time-reversal invariant or if the
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FIG. 5. �Color online� Total pumped current versus the overall phase for oscillating potentials applied at two sites, for a six-site ring with
three electrons. A static potential of strength 1 is applied at site 2, while the oscillating potentials are applied at sites 3 and 4 with an
amplitude b=0.1, a frequency �=0.2, and a phase difference of � /2.
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oscillating potential is applied to only one site. We have pre-
sented an analytical proof of the former statement and have
presented numerical evidence for the latter. It would be very

useful if an analytical proof could be found for the vanishing
of the current for one-site pumping with an arbitrary time
dependence.
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FIG. 6. �Color online� Pumped currents for all the eigenstates of U�T� for oscillating potentials applied at two sites versus the oscillation
amplitude b, for a six-site ring. A static potential of strength 1 is applied at site 2 while the oscillating potentials are applied at sites 3 and
4 with a phase difference of � /2 and a nonresonant frequency �=0.2. In all cases, the current is proportional to b2 for small b.
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FIG. 7. �Color online� Total pumped current for oscillating potentials applied at two sites versus the oscillation amplitude b, for a six-site
ring with three electrons. All the parameters are the same as in Fig. 6.
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We have argued that for a purely Hamiltonian evolution,
the system on a ring does not reach a steady state; the current
averaged over one time period T continues to vary with time
in an aperiodic manner although there is a simple expression
for the current averaged over an infinitely long time. Further,
the averaged current depends on the initial state and on the
overall phase of the oscillating potentials since these two
determine the overlap between the initial state and the eigen-
states of the evolution operator U�T�.

The facts that a steady state is not reached and that break-
ing of time-reversal invariance of the oscillating potentials is
required for charge pumping to occur on a finite ring but not
on an infinite line is due to an important difference between
the models that we have assumed in the two cases. For the
finite ring, we have assumed a purely Hamiltonian evolution
with no mechanisms for momentum relaxation or phase de-
coherence. On the other hand, the study of the infinite line
assumed that there are reservoirs which are maintained at
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FIG. 8. �Color online� Pumped currents for all the eigenstates of U�T� for oscillating potentials applied at two sites versus the oscillation
amplitude b, for a six-site ring. A static potential of strength 1 is applied at site 2 while the oscillating potentials are applied at sites 3 and
4 with a phase difference of � /2 and a resonant frequency �=1.7046. In four cases, the current is proportional to b2, but in two cases, the
current is proportional to b for small b �see text for details�.
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FIG. 9. �Color online� Total pumped current for oscillating potentials applied at two sites versus the oscillation amplitude b, for a six-site
ring with three electrons. All the parameters are the same as in Fig. 8.
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certain chemical potentials. This implicitly assumes that
there are mechanisms for energy or momentum relaxation;
for instance, if an electron emerges from the double barrier
with an energy equal to the resonant energy Er, we assume
that when it reaches one of the reservoirs, it will relax down
to the Fermi energy EF if Er�EF. It appears that such relax-
ation processes, which we have not explicitly referred to in
our calculations but which are necessarily present in the res-
ervoirs, effectively lead to a breaking of time-reversal invari-
ance which is required to have a net dc current on the infinite
line. An earlier study has shown that if a finite ring is
coupled to reservoirs, then charge pumping can occur even if
the oscillating potentials are time-reversal invariant.26

It is also worth noting that on a finite ring, an electron
which emerges to the right from the region containing the
potentials �both static and oscillating� eventually comes back
and enters the same region from the left. Thus the outgoing
current on the right of that region must be equal to the in-
coming current on the left, when these currents are averaged
over a long time. Similarly, the averaged outgoing current on
the left of the region must be equal to the averaged incoming
current on the right. These relations do not hold on the infi-
nite line since an electron going out to the right �left� does
not return to the left �right� of the region containing the
potentials.

We now turn to the possible experimental implications of
our results. It is possible that the dependence of the averaged
pumped current on the initial state and on the overall phase
of the oscillating potentials on a ring with no mechanisms for
momentum and phase relaxation can be observed experimen-
tally. For mesoscopic rings which have a large number of
impurities which lead to elastic scattering, the transport is
diffusive and is characterized by a diffusive round-trip time
�d which is equal to 3L2 / �vFlc�, where lc is the mean-free
path and L is the circumference of the ring.65 Another impor-
tant length scale for ring systems is the phase coherence
length l� which depends strongly on the temperature.64,66,67

However, one may consider wires which have a sufficiently
low density of scatterers and are at sufficiently low tempera-
tures that both lc and l� are much larger L. In such a situa-
tion, we expect that if the pumping potentials are suddenly
switched on, then the averaged pumped current will initially
depend on the overall phase of the potentials. Eventually, at
time scales which are much longer than l� /vF and �d, the
averaged pumped current will no longer remember the over-
all phase; however, a proof of this is beyond the scope of our
analysis since we have not introduced any mechanisms for
momentum and phase relaxation.

Another arena where our results could possibly be tested
is the field of molecular electronics.42,68 We would like to
propose an experimental setup as follows. The conductance
properties of aromatic molecules �which typically have a
ringlike structure� have been studied extensively for several
years. Typically, the transport properties of such molecules
are studied by depositing the molecule on a substrate and
using an scanning tunnel microscope �STM� tip from above
to probe the molecule.68 The number of electrons in the mol-
ecule can be fixed initially by bringing the STM tip close to
the molecule and applying the correct potential to the tip. We
propose that the distance of the STM tip from the molecule

can then be increased so that electron tunneling between the
STM and the molecule becomes negligible; however the
STM tip can still be used to induce an on-site pumping �os-
cillating� potential at a particular atom. This can be used to
study the effect of pumping on the electronic transport
through the molecule. A theoretical analysis of this would
also require us to consider the effect of interactions between
the electrons.

An interesting problem for future studies may be to in-
clude the effects of interactions between the electrons.69 In
particular, one can study whether interactions modify some
of the peculiar features observed on the finite ring, such as
the absence of pumping for an oscillating potential which is
applied to only one site. In this context, we note that inter-
actions between electrons are believed to play a role in de-
termining the magnitude of the persistent current in rings
placed in a magnetic field.70
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APPENDIX

We will use first-order perturbation theory to derive ex-
pressions for the eigenstates of U�T� on a finite ring and the
integrated current in those eigenstates, for both the nonreso-
nant and resonant cases. The treatment below will be seen to
have interesting parallels with the use of first-order perturba-
tion theory to obtain the eigenstates of a time-independent
Hamiltonian in the nondegenerate and degenerate cases, re-
spectively.

The Hamiltonian of interest is H=H0+V�t�, where V�t�
has a periodicity given by T=2� /�. Let us first set V=0. H0
will have a complete set of orthonormal eigenstates � j and
eigenvalues Ej, where we will assume, for simplicity, that the
Ej’s are nondegenerate. We will also assume that H0 is real;
hence the � j’s can be chosen to be real. If a unitary evolution
operator U0�T� is constructed using H0, its eigenstates and
eigenvalues will be given by � j and e−iEjT. Note that since

the wave functions � j are real and Ĵn
�= Ĵn

T=−Ĵn, we have the
useful relations

� j
†Ĵn� j = 0,

� j
†Ĵn�k = − �k

†Ĵn� j for j � k . �A1�

We now turn on the time-dependent perturbation V which
will be assumed to satisfy Eq. �17�. There are three different
possibilities which we will discuss separately: �i� nonreso-
nant case where Ej −Ek is not an integer multiple of �, i.e.,
e−i�Ej−Ek�T�1, for any pair of states j ,k, and �ii� resonant case
where Ej −Ek is an integer multiple of �, i.e., e−i�Ej−Ek�T=1,
but Ej�Ek, for some pair of states j ,k. �iii� Resonant case
where Ej =Ek for some pair of states j ,k.
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1. Nonresonant case

We will find the eigenstate of U�T�, called v1, which dif-
fers at first order in V from a particular eigenstate of U0�T�,
say, �1. We assume that v1�t�=U�t�v1 has an expansion of
the form

v1�t� = �
j=1

N

cj�t�e−iEjt� j , �A2�

where we choose c1�0�=1. �We are not worrying about the
normalization of v1 here, although we see that v1 is normal-
ized to 1 up to zeroth order in V.� We expect that the devia-
tion of c1�t� from 1 at different values of t and also the values
of cj�t� for j�1 will be of order V. From the Schrödinger
equation,

i
dv1�t�

dt
= �H0 + V�t��v1�t� , �A3�

we find the following equations to first order in V:

i
dc1�t�

dt
= c1�t���1	V�t�	�1� ,

i
dcj�t�

dt
= c1�t��� j	V�t�	�1�ei�Ej−E1�t �A4�

for j�1. At first order, we can replace c1�t� by c1�0�=1 in
Eq. �A4�. This gives the solution

c1�t� = 1 − i�
0

t

dt���1	V�t��	�1� ,

cj�t� = � j − i�
0

t

dt��� j	V�t��	�1�ei�Ej−E1�t�, �A5�

for j�1, where � j are constants of integration which can be
fixed as follows. Since c1�T�=c1�0� due to Eq. �17�, we see
from the �1 term in Eq. �A2� that v1�T�=e−iE1Tv1�0�, i.e., v1
is an eigenstate of U�T� with eigenvalue e−iE1T. We therefore
demand that this should also be true for all the other terms � j
for j�1 in Eq. �A2�. We therefore require that cj�T�e−iEjT

=e−iE1Tcj�0� for all j�1. This fixes the value of the constants
� j in Eq. �A5�, and we find that

cj�t� = − i

�
0

T

dt��� j	V�t��	�1�ei�Ej−E1�t�

ei�Ej−E1�T − 1

− i�
0

t

dt��� j	V�t��	�1�ei�Ej−E1�t� �A6�

for j�1. Combining Eqs. �A2�, �A5�, and �A6�, we have an
expression for the eigenstate of U�T� to first order in V. Note
that the corresponding eigenvalue remains e−iE1T to this or-
der; this is a consequence of the choice made in Eq. �17�.

We can now calculate the current averaged over one time
period for one of these eigenstates,

�Ĵn� j j =
1

T
�

0

T

dtv j
†U†�t�ĴnU�t�v j . �A7�

Due to the fact that � j
†Ĵn� j =0, the current can only get a

contribution from cross terms of the form � j
†Ĵn�k for j�k

arising from Eq. �A2�. From Eqs. �A5� and �A6�, we see that

�Ĵn� j j has no contributions of order 1 while the contributions
of order V can only come from a cross term between �1 and
� j for j�1. Such contributions are proportional to

�
0

T

dtei�E1−Ej�tcj�t� , �A8�

where cj�t� is given in Eq. �A6�. We can now do the integral
in Eq. �A8� explicitly and we find that it vanishes. We there-

fore conclude that �Ĵn� j j only receives contributions of sec-
ond order and higher in V.

2. Resonant case with E1ÅE2

Let us now consider the case when two eigenstates of
U0�T�, say, �1 and �2, have the same eigenvalue e−iE1T

=e−iE2T which implies that E1−E2 is an integer multiple of �.
We will assume, however, that E1�E2. We will consider
only the states 1 and 2, and will study how they can be
combined to form eigenstates of U�T� to first order in V. Let
us consider an expansion of the form

v�t� = c1�t�e−iE1t�1 + c2�t�e−iE2t�2, �A9�

where we now assume that both c1�t� and c2�t� are of order 1.
�This is in contrast to the nonresonant case where only c1�t�
was taken to be order 1.� Further, let us take c1�0�=c10 and
c2�0�=c20; we will assume that the deviations of c1�t� and
c2�t� from c10 and c20, respectively, will be of order V at all
values of t. The Schrödinger equation in Eq. �A3� now gives

i
dc1�t�

dt
= c1�t���1	V�t�	�1� + c2�t�ei�E1−E2�t��1	V�t�	�2� ,

i
dc2�t�

dt
= c2�t���2	V�t�	�2� + c1�t�ei�E2−E1�t��2	V�t�	�1� .

�A10�

At first order, we can replace c1�t� and c2�t� by c10 and c20 on
the right-hand sides in Eq. �A10�. This gives

c1�t� = c10 − ic10�
0

t

dt���1	V�t��	�1�

− ic20�
0

t

dt���1	V�t��	�2�ei�E1−E2�t�,

c2�t� = c20 − ic20�
0

t

dt���2	V�t��	�2�

− ic10�
0

t

dt���2	V�t��	�1�ei�E2−E1�t�. �A11�

Using Eq. �17�, we see that
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c1�T� = c10 − ic20�
0

T

dt��1	V�t�	�2�ei�E1−E2�t,

c2�T� = c20 − ic10�
0

T

dt��2	V�t�	�1�ei�E2−E1�t. �A12�

If we now demand that the state in Eq. �A9� satisfies v�T�
=ei�v�0�, i.e., that v�0� is an eigenstate of U�T� with eigen-
value ei�, we find that

c1�T�e−iE1T

c1�0�
=

c2�T�e−iE2T

c2�0�
= ei�. �A13�

This implies that

� c20

c10
�2

=

�
0

T

dt��2	V�t�	�1�ei�E2−E1�t

�
0

T

dt��1	V�t�	�2�ei�E1−E2�t

. �A14�

Defining

� =
1

T
�

0

T

dt��1	V�t�	�2�ei�E1−E2�t, �A15�

we see that

c20

c10
= 	���

�
, �A16�

so that c20 /c10 is a pure phase. Using Eqs. �A12� and �A13�,
we see that the 	 sign in Eq. �A16� corresponds to two
solutions v	�t� which satisfy U�T�v	�0�=ei�	v	�0�, where

ei�	 = e−iE1T�1 − i�T
c20

c10
� = e−iT�E1		�	� �A17�

to first order in �. We thus see that the degeneracy of eigen-
values of U0�T� is broken at first order in V with the phases
�	 being split by equal and opposite amounts.

Finally, we can compute the current averaged over one
time period as defined in Eq. �A7� for either one of the states,

v+ or v−. Once again, only cross terms of the form �1
†Ĵn�2

will contribute. We find that terms of order 1 vanish because
they are of the form

�
0

T

dt�c10
� c20e

i�E1−E2�t�1
†Ĵn�2 + c20

� c10e
i�E2−E1�t�2

†Ĵn�1�

�A18�

and �0
Tdtei�E1−E2�t=0 because E1−E2 is an integer multiple of

� but E1�E2. However, unlike the nondegenerate case,
there is now no reason for contributions of order V to vanish
in general. Hence �Ĵn� j j can get contributions at first order in
V.

3. Resonant case with E1=E2

Finally, let us consider the case when two eigenstates of
H0, say, �1 and �2, have E1=E2. This implies that they also
have the same eigenvalue e−iE1T=e−iE2T of U0�T�. As in the
previous section, we will study how these two states can be
combined to form eigenstates of U�T� to first order in V.

We can check that all the discussion from Eqs.
�A9�–�A12� will remain valid in this case, except that we
have to substitute E1=E2 everywhere. We then find that
c1�T�=c1�0�=c10 and c2�T�=c2�0�=c20 due to Eq. �17�. Fur-
ther, there is now no relation between c10 and c20; we can
choose c10 and c20 in an arbitrary way to obtain two ortho-
normal states v	 which are eigenstates of U�T� with the
same eigenvalue e−iE1T. Thus the eigenvalues of U�T� and
their degeneracy do not change to first order in V.

When we compute the current averaged over one time
period as defined in Eq. �A7� for either one of the states, v+
or v−, we find that, depending on the choices of c10 and c20,
we can get a contribution to zeroth order in V. To be explicit,
this is given by

�
0

T

dt�c10
� c20�1

†Ĵn�2 + c20
� c10�2

†Ĵn�1�

= T�c10
� c20 − c20

� c10��1
†Ĵn�2, �A19�

where we have used Eq. �A1�.
It may seem strange that if E1=E2, there can be a nonzero

current in the states v+ and v− separately even at the zeroth
order in V. However, we note that an energy degeneracy
usually does not occur if static potentials are present. But if
there are no static potentials present, then the system is trans-
lation invariant, and we see that there are momentum eigen-
states �with momenta 	k� which carry equal and opposite
currents even in the limit that the amplitudes of the oscillat-
ing potentials go to zero.
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